20 Years of Cardiac Resynchronization Therapy A Revolution in Heart Failure Care

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

CARE-HF

The Effect of Cardiac Resynchronization on Morbidity and Mortality in Heart Failure

John G.F. Cleland, M.D., Jean-Claude Daubert, M.D., Erland Erdmann, M.D., Nick Freemantle, Ph.D., Daniel Gras, M.D., Lukas Kappenberger, M.D., and Luigi Tavazzi, M.D., for the Cardiac Resynchronization — Heart Failure (CARE-HF) Study Investigators*

Last patient enrolled 2003 !

From the Department of Cardiology, Castle Hill Hospital, Kingston-upon-Hull, United Kingdom (J.G.F.C.); the Department of Cardiology, Hôpital Pontchaillou, Rennes, France (J.-C.D.); Klinik III für Innere Medizin der Universität zu Köln, Cologne, Germany (E.E.); the University of Birmingham, Edgbaston, United Kingdom (N.F.); Nouvelles Cliniques Nantaises, Nantes, France (D.G.); the Division of Cardiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (L.K.); and Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San Matteo, Pavia, Italy (L.T.). Address reprint requests to Dr. Cleland at the Department of Cardiology, Castle Hill Hospital, University of Hull, Kingston-upon-Hull, United Kingdom, or at j.g.cleland@ hull.ac.uk.

*The CARE-HF Study investigators are listed in the Appendix.

This article was published at www.nejm. org on March 7, 2004. 🗲

N Engl J Med 2005;352:1539-49. Copyright © 2005 Massachusetts Medical Society.

CARE-HF

- Primary Publication: 6,547 citations as of August 2023
- Secondary Publications: 16 (2005-2022) many cited >100 times
- Many editorials, reviews & meta-analyses

EUROPEAN SOCIETY OF CARDIOLOGY

Eur J Echocardiography (2006) 7, 373-378

European Journal of Heart Failure (2009) **11**, 480–488

doi:10.1093/eurihf/hfp034

Baseline echocardiographic characteristics heart failure patients enrolled in a large European multicentre trial (CArdiac REsynchronisation Heart Failure study)

Stefano Ghio ^{a,*}, Nick Freemantle ^b, Alessandra Serio ^a, Giulia Magrini ^a, Laura Scelsi ^a, Michele Pasotti ^a, John G.F. Cleland ^c, Luigi Tavazzi ^a Long-term left ventricular reverse remodelling with cardiac resynchronization therapy: results from the CARE-HF trial

Stefano Ghio^{1*}, Nick Freemantle², Laura Scelsi¹, Alessandra Serio¹, Giulia Magrini¹, Michele Pasotti¹, Aparna Shankar², John G.F. Cleland³, and Luigi Tavazzi¹

¹Division of Cardiology, Fondazione IRCCS Policlinico S. Matteo, University Hospital, Piazzale Golgi 1, 27100 Pavia, Italy; ²Division of Primary Care, Public and Occupational Health, University of Birmingham, UK; and ³Department of Cardiology, University of Hull, Kingston upon Hull, UK

AV delay optimisation: shortest AV-delay without compromising the left atrial contribution to LV filling

Timelines

- MUSTIC: 2001 Single-Blind / X-over
 - N = 58; 3 months
- CARE-HF initiated enrolment in 2001
- MIRACLE: 2002 Double-Blind
 - N = 453; 6 months
- CARE-HF completed enrolment of 813 patients in 2003
- COMPANION: 2004 Not Blinded
 - N = 1,520; ~15 months
- CARE-HF published in 2005

Main Inclusion & Exclusion Criteria

- · Heart failure for at least 6 weeks requiring loop diuretics
- Currently in NYHA class III/IV
- · A high standard of pharmacological therapy
- LV systolic dysfunction and dilation
 - EF ≤35%; EDD >30mm/height in metres

• QRS ≥120 ms

- Dyssynchrony confirmed by echo if QRS 120-149 ms
 - Aortic pre-ejection delay >140ms
 - Interventricular mechanical delay >40 ms
 - Delayed activation of postero-lateral LV wall
- · Patients with AF or requiring pacing excluded

QRS 120-149ms

QRS ≥150ms

N = 92

N = 721

Death (All-Cause) or Hospitalisation for Worsening HF

Mechanistic Outcomes

Orteore	Mean difference				
Outcome	at 3 mth*	at 18 mth*			
Systolic BP (mm Hg)	+5.8 (P < 0.0001)	+6.3 (P < 0.0001)			
LVEF (%)	+3.7 (P < 0.0001)	+6.9 (P < 0.0001)			
Mitral regurgitation area (cm ²)	-5.1 (P < 0.0001)	-4.2 (P = 0.003)			
NT Pro-BNP [pg mL ⁻¹]	-225 (P = 0.36)	-1,122 (P = 0.0016)			

* Positive values indicate higher value with CRT compared to control (Care - HF)

Outcome at 18 months 160 Control 150 152 140 CRT 120 100 105 101 N= 80 80 74 60 40 39 20 0 Ш III/IV Dead **NYHA** Care - HF

Mean Follow-up 36.4 months

2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy

The Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA).

Highest (responders)

Areas of dissent from recommendations:

The recommendations given for indications for CRT (see below and Figure 8) represent a majority view of this Task Force but not all who contributed agreed. Several statements are based on subgroup analyses of RCTs that pose many problems with interpretation (interrelationship between QRS morphology and QRS duration, gender differences in response, prognostic benefit in ischaemic vs. non-ischaemic patients) or with areas of uncertainty that are still the objects of investigation (potential role of echocardiographic dyssynchrony in narrow QRS). Future studies might change our knowledge and recommendations.

> Lowest (non-responders)

Wider QRS, left bundle branch block, females, non-ischaemic cardiomyopathy

Robust evidence for only one of these assertions !

Males, ischaemic cardiomyopathy

Narrower QRS, non-left bundle branch block

Cardiac Resynchronization Therapy for HFrEF

- How does (might) it work?
- Compared to what?
- For whom?

How Does CRT Work?

- Senses (and potentially paces) the RA
 - Prevents pauses / bradycardia (reducing sudden death)
- Shortens the AV interval (can't if in AF)
 - Pump-primes LV & RV
 - Reduces diastolic MR
- Ventricular Pacing

Which of these mechanisms is most important?

- Does the importance of each mechanism vary from one patient to the next?
- Alters the timing of KV, LV free-wall & papillary muscle contraction
 - Stabilises the interventricular septum (reducing interventricular dyssynchrony)
 - Corrects delays in LV free-wall activation (reducing LV-dyssynchrony)
 - Reduce
 Does the importance of each mechanism vary with physical activity?
- Raises systolic blood pressure (& improves haemodynamics)
 - By one or more
 Does the importance of each mechanism vary over time?
- Ventricular remotiving
 - Reduces risk of VT (and sudden death)

Meta-analysis of CRT Trials - Ischaemic Heart Disease

Less benefit if IHD

- Yes, for LVEF
- Maybe for symptoms
- Not true for mortality

Effect of CRT on Blood Pressure

COMPANION

CARE-HF NEJM 2005

Table 3. Hemodynamic, Echocardiographi	Table 3. Hemodynamic, Echocardiographic, and Biochemical Assessments.*				
Variable	Difference in Means at 3 Mo (95% CI)	P Value	Difference in Means at 18 Mo (95% CI)	P Value	
Heart rate (beats/min)	+1.1 (-1.2 to 3.4)	0.33	+1.0 (-1.5 to 3.6)	0.43	
Systolic blood pressure (mm Hg)	+5.8 (3.5 to 8.2)	<0.001	+6.3 (3.6 to 8.9)	<0.001	
Diastolic blood pressure (mm Hg)	+1.5 (0.1 to 2.9)	0.03	+1.3 (-1.8 to 4.4)	0.42	
Interventricular mechanical delay (msec)	-21 (-25 to -18)	<0.001	-21 (-25 to -17)	< 0.001	
Left ventricular ejection fraction (%)	+3.7 (3.0 to 4.4)	<0.001	+6.9 (5.6 to 8.1)	< 0.001	
Left ventricular end-systolic volume index (ml/m²)	-18.2 (-21.2 to -15.1)	<0.001	-26.0 (-31.5 to -20.4)	<0.001	
Mitral-regurgitation area†	-0.051 (-0.073 to -0.028)	<0.001	-0.042 (-0.070 to -0.014)	0.003	
N-terminal pro-brain natriuretic peptide (pg/ml)‡	–225 (–705 to 255)	0.36	-1122 (-1815 to -429)	<0.002	

FIGURE 2 Simplified Schematic of Hemodynamic Optimization Method

AV Delay (ms)

(J Am Coll Cardiol Img 2019;12:1407-16)

Cardiac Resychronization Therapy Compared to what?

CRT-P compared to Pharmacological Therapy	CRT-P compared to Back-up RV Pacing*	CRT-D compared to ICD + Back-up RV Pacing*
COMPANION	MIRACLE	MIRACLE-ICD
CARE-HF		MADIT-CRT
		RAFT
		REVERSE (mostly)

* A two-edged sword

Cardiac Resychronization Therapy Compared to what?

CRT-P compared to Pharmacological Therapy	CRT-P compared to Back-up RV Pacing*	CRT-D compared to ICD + Back-up RV Pacing*
COMPANION	MIRACLE	MIRACLE-ICD
CARE-HF		MADIT-CRT
		RAFT
		REVERSE (mostly)

* A two-edged sword

The effect of cardiac resynchronization without a defibrillator on morbidity and mortality: an individual patient data meta-analysis of COMPANION and CARE-HF

European Journal of Heart Failure (2022) 24, 1080-1090

doi:10.1002/eihf.2524

ESC

European Society

of Cardiology

John G.F. Cleland¹*, Michael R. Bristow², Nicholas Freemantle³, Brian Olshansky⁴, Daniel Gras⁵, Leslie Saxon⁶, Luigi Tavazzi⁷, John Boehmer⁸, Stefano Ghio⁹, Arthur M. Feldman¹⁰, Jean-Claude Daubert¹¹, and David de Mets¹²

CRT-P compared to pharmacological therapy

Primary Composite (NEJM Main)

Mitral-regurgitation area							
<0.218	114/302				0.86 (0.60–1.2		
≥0.218	175/303				0.56 (0.41-0.7		
Glomerular filtration rate							
<60.3 ml/min/1.73 m ²	196/369			•	0.67 (0.50–0.8	9)	
≥60.3 ml/min/1.73 m ²	142/370				0.57 (0.40–0.8	0)	
Beta-blockers							
No	131/227				0.72 (0.51-1.0	2)	
Yes	252/586				0.59 (0.46–0.7	6 All-Cause Mor	rtality
Spironolactone						(EHL ovtonsia	
No	166/356				0.58 (0.43-0.7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Yes	217/457			• {	0.67 (0.51-0.8	8)	
Loop diuretics						<0.218 (68/302)	0.81 (0.50–1.30)
<80 mg of furosemide or equivalent	181/461				Mitral regurgitation area	>0.218 (118/303)	- 0.55 (0.38-0.80)
\geq 80 mg of furosemide or equivalent	202/352			- {			0.55 (0.50-0.50)
Digoxin					Glomerular filtration rate	<60.3 mL/min/1.73 m ² (133/369)	- 0.58 (0.41-0.82)
No	218/467					>60.3 mL/min/1.73 m ² (84/370)	
Yes	165/346				Beta-blockers	No (92/227)	0.46 (0.30–0.71)
		0.2	0.5	1.0		Yes (163/586)	0.69 (0.51–0.94)
		-			Spiropolactope	No (121/356)	- 0.55 (0.39–0.80)
		Resynch	ronization Better	Medi	C	Yes (134/457)	0.63 (0.44–0.89)
					-	<80 mg furosemide or equivalent (107/461)	
					Loop diuretics	>80 mg furosemide or equivalent (148/352)	0.61 (0.44–0.84)
					Digovin	No (150/467)	- 0.57 (0.41–0.79)
					Digoxin	Yes (105/346)	0.63 (0.42–0.93)

0.5

0.2

Medical therapy better

1

2

COMPANION/CARE-HF QRS Duration

Favours CRT-P Hazard Ratio (95%Cl; P) deaths Left Bundle Branch Block 0.64 (0.52, 0.79; p<0.0001) deaths=352 Right Bundle Branch Block 0.96 (0.52, 1.75; p=0.88) deaths=50 Non-Specific Intraventricular Conduction Delay 0.87 (0.48, 1.58; p=0.65) deaths=46 Overall 0.68 (0.56, 0.81; p<.0001) deaths=464 Hazard Ratio (95% confidence interval)

Test for interaction between conduction disorder type and CRT-P, p=0.51

B Effect of CRT-P on Heart Failure Hospitalisation or Death Stratified by QRS Morphology

A Effect of CRT-P on All-Cause Mortality Stratified by QRS Duration

Test for interaction between QRS and CRT-P, p=0.45

$B\,\,$ Effect of CRT-P on Heart Failure Hospitalisation or Death Stratified by QRS Duration

European Journal of Heart Failure (2022) 24, 1080–1090 doi:10.1002/ejhf.2524

Α

Effect of CRT-P on All-Cause Mortality Stratified by QRS Morphology

QRS Morphology

Effect of CRT-P on All-Cause Mortality Stratified by Tertiles of Height, Weight and Body Surface Area

В

Α

Effect of CRT-P on Hospitalisation for Heart Failure or Death Stratified by Tertiles of Height, Weight and Body Surface Area

COMPANION / CARE-HF Individual Patient Data Meta-analysis

Eur J Heart Failure 2022

ESC European Society of Cardiology

European Journal of Heart Failure (2022) 24, 1080–1090 doi:10.1002/ejhf.2524

Cardiac Resynchronization Therapy for HFrEF

- Who has most to gain from CRT-P?
 - Sinus Rhythm
 - QRS >140 ms
 - Systolic BP ≤120 mmHg
 - Moderate Mitral Regurgitation
 - Super-responders

Cardiac Resychronization Therapy Compared to what?

CRT-P compared to Pharmacological Therapy	CRT-P compared to Back-up RV Pacing*	CRT-D compared to ICD + Back-up RV Pacing*
COMPANION	MIRACLE	MIRACLE-ICD
CARE-HF		MADIT-CRT
		RAFT
		REVERSE (mostly)

* A two-edged sword

Individual Patient Data Meta-Analyses

- predominantly CRT-D versus ICD

- 3,782 patients:
- QRS duration was the ONLY predictor of the effect of CRT on
 - Death or HF Hosp
 - Mortality
- Threshold ~130msec

Individual Patient-Data Meta-analysis of Medtronic CRT Trials Majority CRT-D versus ICD

Group	Deaths/total subjects	Hazaro	l ratio (95% confidence intervals)	
Overall	(662/3872)			0.66 (0.57, 0.77)
 ICD subject	Yes (366/2437) No (296/1435)			0.69 (0.56, 0.85) 0.63 (0.5, 0.79)
Gender	Male (534/3004) Female (128/868)			0.68 (0.57, 0.8) 0.58 (0.41, 0.84)
Age	<58 (100/980) 58–66 (150/967) 66–72.5 (181/964) >72.5 (231/961)			0.55 (0.37, 0.83) 0.71 (0.51, 0.98) 0.64 (0.48, 0.86) 0.68 (0.52, 0.88)
NYHA	II (229/1877) III (386/1849) IV (47/146)		_	0.62 (0.48, 0.8) 0.69 (0.56, 0.84) 0.58 (0.32, 1.05)
 LVEF	<15 (97/365) 16–20 (143/784) 21–30 (352/2162) 31–35 (32/318) >35 (17/174)			0.62 (0.41, 0.92) 0.57 (0.41, 0.8) 0.75 (0.6, 0.92) 0.52 (0.25, 1.08) -0.75 (0.28, 2)
 Morphology	LBBB (528/3036) RBBB (65/346) Neither (54/467)			0.66 (0.55, 0.78) 0.74 (0.44, 1.23) 0.82 (0.48, 1.41)

Cleland et al Eur Heart J 2013

MADIT-CRT

	LBBB	Not LBBB	RBBB	IVCD
N=	1281	536	228	308
Age (yrs)	64	65	66	64
Women (%)	31	11	8	13
IHD (%)	44	80	87	77
MI (%)	32	70	76	66
QRS (msec)	163	146	153	142

Zareba Circulation 2011

MADIT-CRT

	M/M	M/M	Death	Death
	ICD	CRT-D	ICD	CRT-D
LBBB	32% of 520	16% of 761	7% of 520	8% of 761
	= 166	= 122	= 36	= 61
RBBB	19% of 92	23% of 136	7% of 92	12% of 136
	= 17	= 31	= 6	= 16
IVCD	23% of 117	33% of 191	4% of 117	15% of 191
	= 27	= 63	= 5	= 29

Zareba et al Circ 2011

CRT IPD Meta-analysis

Eur J Heart Fail. 2018 Apr;20(4):780-791.

CRT-P compared to CRT-D

COMPANION

Cardiac Resynchronisation Therapy

for patients with Atrial Fibrillation Predominantly with reduced LVEF

Pulmonary Vein Ablation vs. OPT	Pulmonary Vein vs. AVN Node Ablation	AVN Ablation with BiV-P vs. RV-Pacing	AVN Ablation + BiV-P vs. OPT
CASTLE-AF Subgroup (n = 100)	PABA-HF (n = 81)	MUSTIC-AF (n = 37)	APAF-CRT (n = 133)
CASTLE-HTx Subgroup (n = 73)		PAVE (n = 184)	
		OPSITE (n = 56)	
		AVAIL (n = 108)	
		APAF (n = 186)	

BIOPACE – RV v I for patients with an india n = 1,810	BiV-Pacing cation for pacing Right ventricular (RV) Biventricular (BiV)	Biventrie Blo Anne B. Curt Eugene S. C Timot for the Biver Patients wit	cular Pa ck and tis, I Chu hy S htricular vers h Atrioventri	acing fo Systoli OCK	Cor Atrioventricular c Dysfunction Adamson Sherfesee, P itton, M.D., BLOCK HF) Trial Investig LVEF Mean LVEF ≤35% LVEF >35-50% AF	40% 30% 70% 53%
- 8.0 - 8.0 - 9.0 - 9.0			Conc	luction For	PROTECT-HF System Pacing versus RV Pacing LVEF greater than 35%	
0.5 - Mean Follow-up 5.7 years 0.4 - p (adjusted): 0.08. HR 0.871. 95%-CI: [0.75:	1.01]		RV	Bi-V	Hazard Ratio	P- value
0.3 - RV 908 785 726 657 598 545 47: BiV 902 792 716 665 602 559 506	Mortality 287 106 (co-prim	y ary)	307	305	0.926 (0.789 to 1.009)	0.350
0 12 24 36 48 60 72 Time since randomization (m	honths) 96 HFH or D (co-prim	Death ary)	346	363	0.878 (0.756 to 1.020)	0.088
LVEF 35-50% 419	CV Death	h	106	107	0.97 (0.74 to 1.27)	0.813
LVEF >50% 1239	6MW Dis	stance	371	371	No difference	
AF 450	Minneso	ota QoL	16	15	No difference	
ClinicalTrials.gov Identifier: NCT0	0187278 Infection	ı	76	118	Excess with Bi-V pacing	

ClinicalTrials.gov Identifier: NCT00187278

BUDAPEST CRT Upgrade - Study design

A Multicentre, Randomised, Controlled, Investigator-initiated Trial testing the hypothesis that CRT-D upgrade compared to ICD only would be associated with improved clinical outcomes

Key Inclusion Criteria: HFrEF patients with a prior pacemaker or ICD, RV pacing 20-100%, paced QRS complex \ge 150 ms and GDMT

Key Exclusion Criteria: intrinsic QRS with LBBB morphology, severe renal dysfunction, severe RV dilatation, ACS events

Amsterdam & Online

Merkely et al, Eur J Heart Fail. 2022 Sep;24(9):1652-1661, doi: 10.1002/ejhf.2609.

Secondary Endpoint: All-cause mortality or HF hospitalisation

GBP

95% CI 0.23-1.04

1.2 %

ICD

12 months

FSC European Heart Journal (2021) **00**, 1–94 European Society doi:10.1093/eurheartj/ehab364 of Cardiology

ESC GUIDELINES

Recommendations for cardiac resynchronization therapy in patients in sinus rhythm

Recommendations	Class ^a	Level ^b
LBBB QRS morphology		
CRT is recommended for symptomatic patients with HF in SR with LVEF ≤35%, QRS duration ≥150 ms, and LBBB QRS morphology despite OMT, in order to improve symptoms and reduce morbidity and mortality. ^{37,39,40,254-266,283,284}	I.	А
CRT should be considered for symptomatic patients with HF in SR with LVEF ≤35%, QRS duration 130—149 ms, and LBBB QRS morphol- ogy despite OMT, in order to improve symp- toms and reduce morbidity and mortality. ^{37,39,40,254-266,283,284}	lla	В
Non-LBBB QRS morphology		
CRT should be considered for symptomatic patients with HF in SR with LVEF \leq 35%, QRS duration \geq 150 ms, and non-LBBB QRS morphol- ogy despite OMT, in order to improve symp- toms and reduce morbidity. ^{37,39,40,254-266,283,284}	lla	В
CRT may be considered for symptomatic patients with HF in SR with LVEF <35%, QRS duration 130-149 ms, and non-LBBB QRS mor- phology despite OMT, in order to improve symptoms and reduce morbidity. ^{273-278,281}	IIb	В
QRS duration		
CRT is not indicated in patients with HF and ORS duration <130 ms without an indication for		А

RV pacing.^{264,28}

2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy

Developed by the Task Force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC)

Some Predictions

- CRT-P implant rates will overtake CRT-D
 - ICD implantation rates will decline
- More Conduction System Pacing
- More Pulmonary Vein Ablation